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ABSTRACT

Split-path transmissions are promising alternatives to the common

planetary transmissions for rotorcraft. Heretofore, split-path designs

proposed for or used in rotorcraft have featured load-sharing devices that

add undesirable weight and complexity to the designs. A method was

developed to analyze and optimize the load sharing in split-path

transmissions without load-sharing devices. The method uses the

clocking angle as a design parameter to optimize for equal load sharing.

In addition, the clocking angle tolerance necessary to maintain acceptable

load sharing can be calculated. The method evaluates the effects of

gearshaft twisting and bending, tooth bending, Hertzian deformations

within bearings, and movement of beating supports on load sharing. It

was used to study the NASA split-path test gearbox and the U.S. Army's

Comanche helicopter main rotor gearbox. Acceptable load sharing was

found to be achievable and maintainable by using proven manufacturing

processes. The analytical results compare favorably to available

experimental data.

INTRODUCTION

The drive system requirements for a rotorcraft are especially

demanding. It must transmit the engine power to the rotor while

providing a typical speed reduction of 60 to 1. In addition, the drive

system must be safe, reliable, lightweight, and energy efficient while

producing little vibration and noise. Rotorcraft transmissions have

matured to a high performance level through a combination of analyses,

experiments, and application of field experiences. Still, the next

generation of rotorcraft will call for drive systems that are even safer,

lighter, quieter, and more reliable. These improvements are needed to

increase vehicle payload and performance, improve passenger comfort

and safety, lower operating costs, and reduce unscheduled maintenance.

The weight of the drive system is especially important. It is

significantly influenced by three key features of the configuration: the

number of stages, the number of parallel power paths, and the gear ratio

of the final stage. By using fewer stages, more parallel power paths, and

larger reduction ratios at the final stage, the drive system weight can be

reduced. More parallel power paths reduce system weight because a gear

is sized by mesh loads, not by the total torque. With the total torque

shared among multiple meshes, the gear sizes are reduced. Using a larger

reduction ratio at the final stage reduces the system weight because the

preceding stages then operate at lower torques.

Helicopters typically use a planetary arrangement (Fig. 1) for the

final stage of the geartrain. This arrangement usually has 3 to 18 parallel

power paths, with a maximum reduction ratio of about 7:1. A little used

but promising alternative for the final stage is the split-torque or split-

path arrangement (Fig. 2). With the split-path arrangement, a final-stage

reduction ratio of up to 14:1 is possible with two parallel power paths.

White (1974, 1983, 1984, 1985, 1989) has studied split-path designs and

proposed their use in helicopters after concluding that such designs can

offer the following advantages over traditional planetary ones:
(1) A high speed reduction ratio at the final stage

(2) A reduced number of gear stages

(3) Lower energy losses

(4) Increased reliability because of separate drive paths

(5) Fewer gears and bearings

(6) Lower noise levels from gear meshes

(7) Lower overall drive system weight

Obviously, depending on the requirements of the vehicle, a split-path

design can have significant advantages over the commonly used

planetary transmission.

Despite some attractive features, split-path designs have seen little

use in rotorcraft, because they have been considered relatively risky. A

major risk inherent to these designs is that even gearboxes manufactured

to precise tolerances might carry unequal loads in the two parallel paths.

To compensate for this, designs proposed for or used in helicopters have

featured a load-balancing device. For example, Smirnov (1990) and

Cocking (1986) describe split-path designs that feature quill shafts to

minimize the torque loading differences between the two parallel load



Figure 1 .mPlanetary design with three load paths used

for final stage of helicopter transmission.
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Figure 2.--Example of split-path design with dual power

paths.

paths. However, the quill shafts, as do all load-sharing devices, add

complexity and weight to the design, thereby offsetting some of the

advantages over the proven planetary designs.

Kish (1993a) developed and studied a split-path gearbox that

featured a torsionally compliant elastomeric load-sharing device. The

gearbox was tested extensively both with and without the load-sharing

device, and Kish made the following observations:

(1) Excellent load sharing was obtained when the gearbox was

operated under nominal laboratory conditions and with the torsionally

compliant load-sharing device installed.

(2) The torsionally compliant load-sharing device that was tested

did not meet the requirements for field operation. For example, tempera-

ture cycles degraded the function of the device.

(3) Acceptable load sharing can be achieved without a special load-

sharing device so long as manufacturing and installation tolerances are

adequately controlled. Furthermore, the precision required for manufac-

ture and installation is within the capabilities of available and proven

manufacturing processes.

Thus, Kish's research (1993b) indicates that split-path transmissions

can be successfully used in rotorcraft and that special load-sharing

devices are not necessary. On the basis of this research, a split-path

design was selected for use in the U.S. Army's Comanche helicopter.

However, the load-sharing properties of such designs are not yet fully

understood. For example, Kish (1993a) stated that although acceptable

load sharing was demonstrated during the Advanced Rotorcraft

Transmission project, the measured load sharing was not as good as had

been predicted, considering the precision achieved in the manufacture

and installation of the tested gearbox. He suggested that compliances that

were not considered in the prediction of the load sharing were, in fact,

significant.

The research reported herein was done to help enable the use of

split-path transmissions without special load-sharing devices in the

Comanche and future rotoreraft. An analytical method was developed

and used to study the load-sharing properties of such designs. Here, the

clocking angle of the geartrain is defined and shown to be the key design

parameter in optimizing an otherwise fixed design for equal sharing of

a design load. The load-sharing properties, optimal clocking angle, and

effect of manufacturing tolerances are calculated for two gearbox

designs--the NASA Lewis split-path test gearbox and the Comanche

main rotor gearbox. The analytical predictions are compared to available

experimental data. As a companion study, the load sharing of a split-path

gearbox was evaluated experimentally. The results of that study are

reported separately (Krantz and Delgado, 1996).

SPLIT-PATH CONCEPTS AND DEFINITIONS

In this report, a split path refers to a parallel shaft gearing arrange-

ment, such asthat shown in Figs. 2 and 3, where the input pinion meshes

with two gears, thereby offering two paths to transfer power to the output

gear. Designs that feature a load-sharing device such as an epicyclic

torque splitter (White, 1983), balance beam (White, 1989), or quill shaft

(Smirnov, 1990; Cocking, 1986) are not considered in this study. This

study is limited to split-path designs without a load-sharing device or
mechanism.

For purposes of discussion, a coordinate system and some concepts

are defined as follows (see Fig. 3): A fight-hand Cartesian coordinate

system is established such that the z-axis is coincident with the output

gear shaft, the positive y-axis extends from the output gear center
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Figure 3.mlllustration of conceptual experiment to
measure geartrain clocking angle 13.

through the input pinion center, and the input gear drives clockwise. The

first-stage gear, gearshaft, and second-stage pinion combination are

collectively called the compound shaft. The two power paths are

identified as A and B, with A to the right of B.

The clocking of a split-path geartrain is an important attribute. For

example, there are certain clockings where the geartrain could not be as-

sembled because some of the gear teeth would interfere with one another.

In this report the clocking and load sharing of a split-path geartrain will

be shown to be related. Let us describe the clocking by a clocking angle _.

Figure 3 shows a method by which this angle could be measured. Here,

the output gear is fixed from rotating and a nominal clockwise torque is

applied to the input pinion so that the gear teeth come into contact. If all

the gear teeth of both power paths come into contact, then the clocking

angle _ is, by definition, equal to zero. If the teeth of one power path are

not in contact, then the clocking angle _ is equal to the angle that the

first-stage gear would have to be rotated relative to the second-stage pinion

to bring all teeth into contact. Clocking angle _ could be determined by

using a dial indicator to measure the circumferential movement of a gear

tooth while rotating the "loose" compound shaft over the range of play

and then calculating

_=X/R (1)

where X equals the movement measured by the indicator and R is the

radius at which the indicator is located. Under nominal torque, the

clocking angle _ is defined as positive if a gap exists in path A, and as

negative if the gap exists in path B.

To relate the clocking angle to load sharing, we can use the concept

of the loaded windup of the geartrain. Envision that the output gear of

a geartrain is rigidly fixed from rotating and a torque is applied to the

input pinion. As the torque is applied, the input shaft will rotate some

amount because of deformations. This rotation of the input pinion

relative to the output gear is called the loaded windup. Using the

definitions just established, we can see that the loaded windups of the

two power paths are related to the clocking angle by

LWB - LWA
= (2)

GR

where LWA = the loaded windup of power path A; LWB = the loaded

windup of power path B; and GR = the reduction ratio of the input pinion

and compound shaft gear.

The torque transferred by each load path is a product of the loaded

windup multiplied by the net torsional stiffness of that path. Considering

this fact along with Eq. (2), we can treat the clocking angle 13as a design

variable. For an otherwise fixed design, the clocking angle can be

adjusted to split a design load equally between the two power paths. Of

course, as already mentioned, the clocking angle must also allow for

assembly of the geartrain.

ANALYTICAL METHOD

An analytical method was developed to study split-path load

sharing. In so doing, the following assumptions were made:

(1) The docking angle _ is the only variable dimension; all other

dimensions equal the nominal blueprint dimensions.

(2) The significant deformations that contribute to the loaded

windups are gearshaft torsion and bending, bearing center movement due

to Hertzian deformations at rolling element contacts, gear tooth deflec-

tion, and bearing support/housing distortions.

(3) Forces due to friction, thermal expansion, and inertia effects are

negligible.

(4) Bearing raceways remain as perfect circles, even under load.

(5) For purposes of calculating gearshaft bending, bearings act as

pinned connections and, therefore, do not support reaction moments.

In this method the loaded windups of each load path are calculated

for a given input torque and a given load split between the two power

paths. The calculated loaded windups can then be used in Eq. (2) to find

the clocking angle _. By analyzing an array of input parameters, the

relationship between the clocking angle and load sharing can be

established for a given input torque. Under the assumptions stated, the

gear tooth and bearing reaction force vectors can be calculated by

applying gearing kinematics and the methods of statics. Then the

deformations within the gearbox, and the windup caused by such

deformations, are calculated. In the following paragraphs the calculation

of each of the significant deformations is explained.

Gearshaft Torsion

To calculate gearshaft torsion, equivalent torsional spring constants

for the shafts were determined. The complex shaft shapes were approxi-

mated by using a series of sections having constant cross sections. The

torsional spring constants for each section were calculated by



L
K = -- (3)

JG

where L is the section length, J is the polar moment of inertia, and G is

the material's shear modulus. The equivalent torsional spring constants

for the shafts were then determined by treating the shafts as a set of

torsional springs in series.

Gearshaft Bendin9

To calculate gearshaft bending, the following classical differential

equation for bending was used:

E1 d2 y
--_T = M

(4)

where y is the deflection of the neutral axis, x is a local coordinate along

the shaft length, and M (the bending moment), I (the moment of inertia),

and E (Young's modulus) each may be a function of coordinate x. To

apply the equation, the complex shaft shapes were approximated as a

series of sections, each having either a constant or a linearly varying

moment of inertia (Fig. 4, for example). Equation (4) was integrated for

each of the shaft sections, and the constants of integration were deter-

mined by applying matching boundary conditions for the shaft interior

and also by assuming zero deflections and moments at the bearing

locations. This procedure yielded a set of algebraic equations that were

solved simultaneously by matrix algebra. The beam bending for each

shaft was calculated twice, once each in two orthogonal planes; the

resulting deflections were summed by vector addition.

Bearino Deflections

The force supported by the bearing causes Hertzian deformations at

the rolling element contacts and deforms the overall shape of the

raceways. In this study, only the Hertzian deformations were considered.

The bearing deflections were calculated by an iterative procedure. The

first step of the procedure was to guess the radial movement of the

bearing center. Then this guess was the input to calculate the total radial

deformation of each inner raceway, rolling element, and outer raceway

contact. In the third step the radial force that was consistent with the just-

calculated radial deformation was calculated for each rolling element

contact. This third step was done by trial and error, that is, estimating the

radial force on the rolling element and calculating the Hertzian contact

deformations with the approximation methods of Hamrock (1991). If

these latter deformations equaled those calculated by the second step,

then the radial force on the rolling element was considered to have been

determined; otherwise, the third step was repeated with a new estimate

of the radial force. In the fourth step the radial forces on all the rolling

elements were summed, by vector addition, to calculate the bearing

support force. Next, the bearing support force calculated in step four was

compared with the bearing support force calculated by a static analysis

of the gearshaft. If the two calculated forces were approximately equal,

then the guess made for the bearing center movement in step one was

deemed appropriate, and the bearing deformation was determined. If the

forces were not equal, a new guess was made, and the entire process was

repeated from step one. Detailed equations are given in the appendix A.

Section Moment Resistance to bending,
number of inertia kN.m 2

1 Constant 50.2
2 Constant 448

3 Constant 364

4 Linear 207 At right end
101 At left end

5 Constant 1662

6 Constant 17.2

Figure 4.--CromPsectional geometry, approximate

geometry, and sectional properties used to predict

gearshaft bending.

Gear Tooth Deflections

The gear tooth deflections were calculated by using a spring

stiffness equal to the mean of the time-varying mesh stiffness. The mesh

stiffness was calculated by using the contact ratio of the gear pair and the

method of Cornell (1981) to calculate the stiffness of a pair of contacting

spur gear teeth. Cornell's method takes into consideration the effects of

the tooth acting as a cantilever beam, the Hertzian contact deformations,

the tooth base support, and the contact position. To calculate the mesh

stiffness spring constant, the helical gears were modeled as an equivalent

set of staggered spur gears. The preprocessor of computer program

GEARDYNMULT (Boyd, 1989) was used to do the calculations of

Comell's method.

Beadno Suoport (Housino) Deflections
For lack of better information or analytical methods, the housing

deflections at the bearing support locations were assumed to be in the

direction of the beating net radial force and to be equal in magnitude to

one-half of the calculated bearing center movements due to Hertzian

deformations.

Once all of the significant deformations were calculated, the

resulting loaded windup of each power path was calculated. The loaded

windup due to gear teeth deflections, gearshaft torsion, and gear center

displacements can be calculated individually and summed by

superposition. The loaded windup due to gear teeth deflections and

gearshaft torsion was straightforward. The gear center displacements

4



werecalculatedasthevectorsumofgearshaftbending,bearingcenter
movement,andhousingdistortion.Thenthewindupofeachloadpath
duetogearcentermovementswasdeterminedbyapplyingtheproperties
ofinvolutegears.Figure5illustratesthisidea;detailedequationsare
giveninappendixB.
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ANALYSIS OF THE NASA LEWIS SPLIT-PATH GEARBOX

The NASA Lewis split-path gearbox was studied by using the

newly developed analysis method. This gearbox (Figs. 2 and 6) has two

stages and is designed to operate at 373 kW (500 hp) with an input shaft

speed of 8780 rpm. Gear and bearing design data are given in Tables 1

and I1. In a case study, the load sharing was optimized at a selected

design torque of 406 N-m (3590 in-lb) at the input shaft. The clocking

angle tolerance that would produce acceptable load sharing was also cal-

culated. Load sharing was considered acceptable if the more heavily

loaded of the split load paths carried no more than 53 percent of the

selected design torque. The results are given in Table III. The analysis

predicted that the most heavily loaded split path would carry no more

than 53 percent of the design torque so long as the clocking angle was

maintained within the range -(3.00146 to -0.00060 rad (-5.1 to -2.1 min).

To obtain some further insights, the components of the total loaded

windup for each load path were calculated for the condition of equal load

sharing (Fig. 7). The largest component of the total loaded windup is due

to the lateral movements of the second-stage gears. The lateral move-

ments are caused by the combined effects of beating deformations,

housing deformations, and gearshaft bending, and they are very

significant because the first-stage gear ratio amplifies their effects. From

Eq. (2) we see that since the two power paths have different total loaded

windups, the optimal clocking angle deviates from zero. This deviation

is entirely due to the lateral movements of the gears; therefore, a

torsionally compliant load-sharing device that increases the compliances

of both compound shafts by equal amounts would not optimize the load

sharing of this gearbox since such a device has no effect on lateral

movements.

(a)

Gap

ANALYSIS OF THE COMANCHE MAIN ROTOR GEARBOX

The Comanche helicopter's main rotor gearbox was analyzed with

the newly developed method. This gearbox (Fig. 8) transmits power from

two engines to the main and tail rotor shafts. It has three stages: a spiral

bevel stage; a spur gear stage, where the load is split; and a double

helical stage, where a total of four pinions recombine the power and

drive the output gear. The output gear drives the tail rotor shaft through

a double helical and bevel mesh. Each engine normally provides power

at 820 kW (1100 hp) but can provide 1060 kW (1420 hp) during

emergencies (e.g., when one engine is inoperative). Gear and bearing

design data are given in Tables IV and V.

The same analytical method that was used to study the NASA Lewis

split-path gearbox was used to study the Comanche gearbox, with

modifications for calculating the lateral movement of the output gear. For

the NASA Lewis gearbox, the movement of the bearing supports was

calculated as being in the direction of the net bearing force and equal in

magnitude to one-half of the total Hertzian deformations of that bearing.

Since results of a finite element analysis of the Comanche gearbox were

available (B. Hansen, 1994, Sikorsky Aircraft, personal communication),

they were used to model the output gear bearing support stiffness as two

springs. (The spring constants used were 16x108 N/m (9.0x105 lb/in.)

(b)

Figure 5._lllustration showing windup of input pinion
9 due to lateral movement of output gear. (a) Gears

at initial angular orientations with output gear dis-

placed horizontally. (b) Gears at final angular orien-
tations after rigid body rotations to bring teeth into

contact.
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Figure 6._ross-sectional view of NASA split-path test gearbox.
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Figure 7.--Total and relative contributions of loaded windups for NASA spilt-path test

gearbox for an input shaft torque of 406 N-m (3590 in.-Ib) split equally between the

two power paths.

TABLE I._Gear Data of the NASA Split-Path Test Gearbox

Location Number Pitch Face Normal Helix

of diameter, width, pressure angle,
teeth mm rran angle, deg deg

First-stage pinion 32 51.1 44.5 20 6

First-stage gear 124 197.9 38.1 20 6

Second-stage pinion 27 68.6 66.0 25 0

Second-stage gear 176 447.0 59.9 25 0

TABLE II.--Bearing Data of the NASA Split-Path Test Gearbox

Location

Input shaft

Compound
shaft

Output shaft

Input shaft

Output shaft

Type Inner
raceway

diameter,

Roller 50.0

Roller 87.4

Roller 113.0

Duplex ball 48.9

Ball 109.1

Outer Number Roiling Roller Contact
raceway of element length, angle,

diameter, rolling diameter, mm deg
mm elements rran

69.1 13 9.53 13.20 -

66.5 15 10.67 10.67 -

133.9 23 15.88 10.41 -

71.3 14 11.13 ---- 29

140.9 14 15.88 --- 0



TABLE III.--Predicted Relationship Between

Load Sharing and Clocking Angle for NASA

Split-Path Test Gearbox

IInpul

Load,

percent

Path A Path B

47 53

50 50

53 47

shaft torque, 405.6 N-m5

Loaded windup,
rad

Path A

0.01728

.01801

.01874

Clocking

angle,
tad

Path B

0.02293 -0.00146

.02199 -.00103

.02105 -.00060

TABLE IV.--Gear Data of the Comanche Main Rotor Gearbox

Location

First stage

Bevel pinion I

Bevel gear a

Second stage
Spur pinion

Spur gear
Third stage

Double helical pinion
Double helical gear

aBevel mesh has shaft an

Number of Pitch

teeth diameter,

rrma

31 115.7

63 235.1

33 92.0

95 265.0

13 58.4

144 647.2

le of 77 °.

beach half of the double helical members.

Face

width,

n'lm

23.0

23.0

25.7

25.7

b31.6

b34.4

Normal Helix or

pressure spiral

angle, angle,

deg deg

20 32

20 32

22.5 0

22.5 0

20 35

20 35

TABLE V.--Bearlng Data of the Comanche Main Rotor Gearbox

Location

First-stage bevel pinion
Outboard

Inboard

First/second-stage shaft

Upper
Lower

Second/third-stage shaft

Upper
Lower

Third-stage output shaft

Type

Spherical roller
Roller

Roller

Duplex ball

Roller

Roller

Tapered roller

Pitch

diameter,

67.8

65.4

77.5

54.0

77.5
8O.0

381.8

Rolling
elements

per row

16

18

18

19

14

10

100

Rolling Roller Contact

element length, angle,

diameter, nan deg
iran

11.0 15.0 13.4

9.0 9D 0

11.0 11.0 0
79 --- 20.0

14.0 14D 0

19.0 19D 0

8.8 13.2 16.5



Figure 8._Spllt-path design for two engines used for Comanche helicopter.

along the aircraft centerline and 6.0×108 N/m (3.5x 105 lb/in.) perpendic-

ular to the centerline.) The output gear of the Comanche gearbox is

supported by a tapered roller bearing, but the developed analytical

method is valid only for straight roller bearings. With the assumption

that the deflection of the tapered roller bearing would be equal to that of

an "equivalent" straight roller bearing, an equivalent bearing was

defined. The cross section geometry of the tapered roller bearing midway

along the roller length was used to define the geometry of the equivalent

straight bearing for purposes of calculating the bearing deflection.

The optimal clocking angle for each engine load path that would

produce equal loads in each split path with both engines operating at

normal flight power was calculated. Also, each path's allowable clocking

angle tolerance was determined such that the most heavily loaded split

path would carry no more than 53 percent of the power of one engine.

The results, presented in Table VI, show that so long as the clock-

ing angles are maintained to within -0.00070 to +0.00176 rad (-2.4 to

+6.1 min) for engine 1 and to within +0.00331 to +0.00584 rad (+ ! 0.7 to

+20.1 min) for engine 2 the 53-percent-load maximum can be achieved.

TABLE Vl.--Predicted Relationship Between Load Sharing and Clocking Angle for the

Comanche Main Rotor Gearbox

[Engines op

Power in each load path,percent

Engine 1

Path A Path B

5O 5O

53 47

53 47

47 53

47 53

Engine 2

Path A Path B

5O 5O

53 47

47 53

53 47

47 53

ratin_ at 820 kW (1100 hp) per en_ine.]

Engine t

Clocking

angle, rad

Engine 2

Loaded windup, radLoaded windup, rad

Path A Path B

0.0321 0.0336
.0335 .0315

.0343 .0318

.0299 .0355

.0307 .0358

+0.00053

-.00070

-.00086

+.00192

+.00176

Path A Path B

0.0261 0.0393

.0279 .0374

.0244 .0416

.0278 .0369

.0243 .0411

Clocking

angle,
rad

+0.00458

+.0033 l

+.006(0

+.00315

+.00584



TABLE vII.mPredicted Load Sharing for the Comanche Main Rotor
Gearbox Operating Under Emergency" Conditions for Clocking Angles
That Maintain a 53- to 47-Percent Load Split Under Cruise Conditions

[Cruise power = 820 kW (1100 hp) per engine; emergency condition power = 1059 kW
(1420 hp).]

Clocking angles in
assembled configuration,

rad

Engine 1 Engine 2

Engine 1 power to path A,
percent

At cruise With one
condition engine

inoperative

Engine 2 power to path B,
percent

At cruise With one
condition engine

inoperative

At nominal clocking angles

+0.00053 +0.00458 50.0 53.5 50,0 54.2

At maximum clocking angles

+0.00176 +0.00584 47.0 51.2 53.0 56.4

At minimum clocking angles

-0.00070 +0.00331 53.0 55.7

"Emergency condition is defined as one engine inoperative.

47.0 52.0

8O

/...""7O

$ 60

_. /e Ideal

50 ..............- , .^--..__,_¢

,:/
• / • Experiments, box 1

ne • ee • Experiments, box 2
3O

20 I / t I I t I
-0.009 -0.006 -0.003 0.000 0.003 0.006 0.009

Clocking angle, rad

Figure 9,_lExperimental data end analytical predictions

of percentage of total torque to power path A as a

function of clocking angle for NASA split-path test

gearbox; Input shaft torque of 367 N-m (3250 in.-Ib).

It is reasonable to expect that these tolerances can be maintained during

manufacture. Therefore, split-path transmissions without load-sharing

devices can be built so as to maintain acceptable load sharing by using

proven manufacturing capabilities. This is encouraging evidence that

these transmissions could be successfully used for rotorcraft.

TABLE VIIl._xperimentally and Analytically
Detarmined Power Distribution Among Split

Paths of Comanche Main Rotor Gearbox

[Input shaft power = 820 kW (1100 hp) per engine.]

Ranking
by load

level

Engine Power Engine power transmitted
number path by split path, percent

1 2 A
2 1 A
3 1 B
4 2 B

Experiment Analysis

58 60
53 52
47 48
42 40

The load sharing of the Comanche gearbox operating under

emergency conditions (with one inoperative engine) was studied. The

clocking angles considered in this part of the study were those that

provided acceptable load sharing under normal operating flight power.

Results of the calculations are presented in Table VII. Under normal

flight power and with the clocking angles at maximum acceptable

dimensions, the most heavily loaded split path will carry 435 kW

(583 hp) or 53.0 percent of an engine's normal flight power. For the

same clocking angles and with only engine 2 operating, the most heavily

loaded split path will carry 597 kW (801 hp) or 56.4 percent of emer-

gency condition power. During the emergency power condition, the

power output of the operating engine increases by 29 percent over the

normal flight condition, but the power carried by the most heavily loaded

split path may increase by as much as 37 percent. Thus the load sharing

of a split-path gearbox under normal two-engine conditions can be very

different from the load sharing for emergency, one-engine-inoperative

power conditions.
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL

RESULTS

The results of this analytical study were compared to the results of

the companion experimental study (Krantz and Delgado, 1996). Results

describing the percentage of the total torque carried by power path A as

a function of the clocking angle are compared in Fig. 9. Both the

analyses and experiments indicate that power path A will carry the

desired 50 percent of the total torque at a clocking angle of approxi-

mately -0.001 rad. For a given clocking angle deviation from the

optimal value, the analysis predicts a somewhat greater deviation from

equal load sharing than was measured experimentally. For example, if

53 to 47 percent of the total torque is considered the acceptable load for

power path A, the analysis suggests a tolerance for the clocking angle of

about _+0.0004 rad, whereas the experiments suggest the tolerance was

about _+0.0007 rad.

Analyses were also conducted to predict the results of experiments

done to measure the load sharing of the prototype main rotor gearbox for

the Comanche helicopter. The prototype gearbox was designed for

nominal clocking angles of zero for both engines. The results of the

experiment indicate that the clocking angles of the tested gearbox were

indeed near zero (experimental work done by J. Kish, 1995, Sikorsky

Aircraft; personal communication). Experimental and analytical results

are compared in Table VIII. The analytically predicted rankings of the

split paths (from highest to lowest loads) are confirmed by the experi-

ments. The measured and predicted loads for the individual split paths

match to within about 3 percent of one engine's power. For both

gearboxes studied, the analytical predictions compare favorably to the

experimental results.

The differences between the analytical and experimental results

presented here are probably due to the net effects of several assumptions

made in developing the analytical method. One significant assumption

was that the bearing races remained as perfect circles, even under load.

A second significant assumption was that the magnitude of the housing

deformations at the bearing supports equaled one-half of the bearing center

movements due to rolling element and raceway deformations. If

a more precise analysis is desired, perhaps the validity of these two

assumptions should be assessed

SUMMARY

This investigation was done to better understand split-path

transmissions without load-sharing devices and to support their use in the

Comanche and in future rotorcraft. An analytical method was developed

to calculate the effects of deformations on load sharing. This method was

applied to both the NASA split-path gearbox and the Comanche main

rotor gearbox. The following results and conclusions were obtained:

1. The clocking angle can be considered a design variable for split-

path gearboxes. For an otherwise fixed design, the clocking angle can be

adjusted to split a design load equally between the two power paths.

2. For the NASA split-path gearbox, the analysis predicts that the

most heavily loaded split path will carry no more than 53 percent of the

design torque so long as the clocking angle is maintained within the

range -0.00146 to -0.00060 rad (-5.0 to -2.1 min).

3. For the Comanche main rotor gearbox, the most heavily loaded

split path will carry no greater than 53 percent of one engine power so

long as the clocking angles are kept to within -0.00070 to +0.00176 rad

(-2.4 to 6.1 min) for engine 1 and to within +0.00331 to +0.00584 rad

(+11.4 to +20.1 min) for engine 2.

4. The load sharing of a split-path gearbox with two engines

operating under normal flight conditions can be very different from the

load sharing for emergency (one-engine-inoperative) power conditions.

5. The analytical predictions compare favorably to experimental data.

6. Split-path transmissions without load-sharing devices can be built

to maintain acceptable load sharing by using proven manufacturing

capabilities. This is encouraging evidence that these transmissions could

be successfully used for rotorcraft.
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APPENDIX A
CALCULATION OFTHE DEFORMATIONS OF ROLLING ELEMENT AND RACEWAY CONTACTS

The methods presented by Hamrock (1991) were used to calculate

the deformations of rolling element and raceway contacts. The equations

that follow are approximate solutions of the classical Hertzian theories.

Material properties are introduced into the calculations by defining an
effective elastic modulus E' as

2

E'= l_v2 l_v2 (A1)
+

el ez

where E = Young's modulus, v= Poisson's ratio, and the subscripts 1 and

2 indicate the rolling element and raceway materials, respectively. For

cylindrical roller bearings, the curvatures of the bearing geometry are

introduced into the calculation by

where rbx is the raceway radius, rax is the roller radius, the plus sign

designates an inner raceway, and the minus sign designates an outer

raceway. The dimensionless load W" is defined as

Figure lO.--Cress-sectional geometry of

ball and outer race showing race

conformity.

rbx + rax d do + di) + dcos(y)

R x = (A8)
d o + d i

F
W' = -- (A3)

E'Rxl

where F is the load on a single rolling element and I is the rolling element's

effective length. The contact semiwidth b is calculated by

"8W" .1:2

The maximum deformation of a roller raceway contact Aroll is then

calculated by

A roll = _ [3 + In + In
(A5)

For ball bearings, the conformity of the geometry is introduced into the

calculations by

r
f = -- (A6)

d

where r is the raceway groove radius and d is the ball diameter (Fig. 10).

The curvatures of the ball bearing geometries are calculated by

fd
Ry - 2f-1

(A7)

where d o is the outer raceway diameter (the inner diameter of the out

race), d i is the inner raceway diameter, d is the ball diameter, yis the

bearing contact angle, the plus sign designates an outer raceway contact,

and the minus sign designates an inner raceway contact. The curvature

sum R is defined as

(A9)

The curvature ratio t_ is defined as

(AI0)

The Hertzian contact ellipticity parameter K is then calculated as

K = o_{2/n} (AI 1)

and the elliptical integral terms C and A as

C = 1+ (AI2)

A=rC2 +_[2-1}lnc_ (A13)
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The maximum deformation in a ball and raceway contact Aball can then

be calculated as

AI( 9 l( F,/2}1/3
(A14)

where F is the load carried by a single ball. These methods were used to

calculate the load carried by each rolling element of the bearing, and all

of the load vectors were summed to calculate a net bearing load. The

relation between the net radial load and radial deformation for a rolling

element bearing is typically nonlinear, as illustrated by Fig. 11. The

following FORTRAN subroutines were used to do the calculations for

this study:

FORTRAN subroutineforroller bearing deflections:

subroutine rolldf

(tl,dr,di,do,rl,er,prr,ei,pri,eo,pro,o,ai,ao)

subroutine to calculate the deflection for o single
roller element, inner race, outer race conjunction for

roller bearings

version 1.0 6/22/93 tim krontz

version i.i 12/27/93 changed name to 6 letters to keep
within standard FORTRAN convention

version 1.2 2/7/94 changed coefficients within log
expressions from 4 to 2, per NASA RP-1126

Hertzian calculations are based on equations in

NASA RP-1126, Lubrication of _chine Elements

(Homrock, 1991).

required inputs

tl = total load

dr = roller diameter

di = inner raceway diameter

do = outer raceway diameter

rl = roller length

er = Young's modulus for roller

prr = Poisson's ratio for roller

ei = Young's modulus for inner race

pri= Poisson's ratio for inner race

eo = Young's modulus for outer race

pro = Poisson's ratio for outer race

outputs

a = total deformation
oi = inner race deformation

oo = outer race deformation

C

c calculate elastic coefficients

c
c inner race & roller

C

eroll=Cl.-prr*prr)/er

eirac=(1.-pri*pri)/ei
epi=2./(eroll+eiroc)

C

c outer race & roller

c

eorac=(1.mpro*pro)/eo

epo=2./(eroll+eoroc)

12 000

10 000

8OOO
Z

_" 6000

I1:
4000

2000

0
0.00 0.01 0.02 0.03 0.04 0.05

Radial deflection, mm

Figure 11._Example of typical nonlinear function

relating radial deflection of rolling element bearing

to radial load.

J
0.06

C

C calculate curvature terms

C

rax=dr/2,

rbxi=di/2.

rbxo=do/2.

rxi=(rax*rbxi)/(rbxi+rox)

rxo=(rox*rbxo)/(rbxo-rox)

c
c calculate outer race & roller deformation

C

uload=tl/rl

wprime=uload/(epo*rxo)

b=rxo*sqrt(8.*wprime/3.141592)

coeff=Z.*wprime*rxo/3.141492

oo=coeff*(Z./3.+log(Z.*rax/b)+log(2.*rbxo/b))

C

c calculate inner race & roller deformation

C

wprime=ulood/(epi*rxi)

b=rxi*sqrt(8.*wprime/3.1415gz)

coeff=Z.*wprime*rxi/3.141492

ai=coeff*(2./3.+log(Z.*rax/b)+log(2.*rbxi/b))

C

c total deformation is sum of inner and outer

c race conjunctions

C

a=ai+ao

return

end

FORTRAN subroufinefor b_l bearing deflections:

subroutine bnltdf(tl,d,di,do,fi,fo,del)
c

c subroutine to calculate the deflection for o single

c rolling element, pure radially loaded inner

c race-boll-outer race conjunction-to be used for

c calculating boll bearing deflections
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version 1.0

version I.I

of ki and ko

1/31/94 tim krantz

2/3/94 correct typo for calculation

Hertzian calculations are based on equations in

NASA RP-1126, Lubrication of _chine Elements

(Hamrock, 1991, p. 78)

required inputs

tl

d

di
do
fi

fo

outputs

del

= total load (Ib)

= bait diameter (in.)

= inner raceway diameter (in.)

= outer raceway diameter (in.}

= inner race conformity ** see notes

= outer race conformity ** see notes

= total deformation in direction of

applied load

c

c Notes :

1,

2.

It is assumed that the material is steel

with E=38e+e6 and Poisson's ratio = 0.29.

The race conformities (f) are often not

available in bearing catatogs. By definition,

the race conformity is greater than or equal

to 0.5. Host bearings are in the range

0.51<f<0.54, with f = e.SZ the most ccmI_on

vatue. Often, the outer race conformity is

smaller than the inner race conformity in order

to equalize the contact stresses of the inner

c and outer races. The difference in conformities

c usually does not exceed 0.e2.
c

real ki,ko

pi=otan(1.)*4.

eprim=32.755e+_6

calculate curvature terms

de=@.5*Cdo+di)

rxi=d*Cde-d)/(Z.*de)

rxo=d*Cde+d)/CZ.*de)

ryi=fi*d/(Z.*fi-1.)

ryo=fo*d/(Z.*fo-l.)

ri=l./(1./rxi+1./ryi)

ro=l./(l./rxo+1./ryo)

alphi=ryi/rxi

alpho=ryo/rxo

ki=alphi**(2./pi)

ko=alpho**(2./pi)

q=(pi/2.)-l.

ei=l+(q/atphi)

eo=l+(q/atpho)

ffi=(pi/2.)+q*tog(atphi)

ffo=(pi/Z.)+q*log(otpho)

tl=9./(2.*ei*ri)

t2=tl/(pi*ki*eprim)

deli=ffi*((tl*t2*t2)**(1./3.))

tl=9./(2.*eo*ro)

t2=tt/(pi*ko*eprim)

delo=ffo*((tl*t2*t2)*'(1./3.))

de1=deti+deto

return

end
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Appendix B
Calculation of Pinion Windup Resulting From the Movements of Gear Centers

The properties of the involute were used to calculate the pinion

windup resulting from the movements of the gear centers. These

movements occur because of gear support forces that arise when torque

is carried by the gear pair. In the description that follows, a gear's angular

orientation is defined as the polar angle, in the global coordinate system,

of the vector originating at the gear center and ending at the intersection

of the gear's base circle and the involute curve of interest. If we use the

gear member as a reference, the pinion windup is the difference between

the pinion's angular orientations when the geartrain is loaded and that

when the geartrain is unloaded.

To calculate the angular orientation of the gear under no load, we

use the known radii of the base circles, the global X-Y Cartesian

coordinates of the gear centers, and the radial distance from the gear

center to the contact point along the line-of-action (Fig. 12). We also

establish a local X'- Y'coordinate system such that the Y'axis is coincident

with the line-of-centers. Further, we assume that the driving member

rotates clockwise (see Eqs. (B 16) to (B 18) in this appendix for the case

of the driving member rotating counterclockwise). The angle fl that

relates the global and local coordinate systems is given by

£_1 = arctang entI Yel - YGI } r¢l xpt - x_---_--i
(BI)

The installed center distance and pressure angles are

MU= ,it{xet - 2 2XGI } -t-{YPI - gG1} (B2)

['r +r ]

i'll =arccosinel-2-_I (B3)

Next, the length of line segment AB may be calculated from the properties

of right triangle ABM, since the length of line segment BM is known to

be equal to the radius to the contact point:

= - rg (B41

By the properties of the involute, the length of line segment AB equals

arc length AC. Therefore, angle _'t may be calculated as

AB
_.] : -- (B5)

rg

In Fig. 12, we see that fit is positive counterclockwise, so the gear

angular orientation angle crg can be calculated by

yl

Y

Pinion

Gear

A

N [Xpl, Ypl)

(Xgl, Ygl) X'

_X

Figure 12,_Coordinate systems and variables to

calculate pinion orientation angle with radius

contact point.

Og = _- +'Ill -_'1 +fl (B6)

Equations (B 1) to (B6) establish a general procedure for calculating the

gear angular orientation angle.

Equations (B7) to (B 15) establish a general procedure to calculate

the pinion angular orientation angle if the gear centers' coordinates, the

radii of the base circles, and the gear angular orientation angle crg
(Fig. 13) are known. A local X"-Y%oordinate system is established such

that the Y"-axis is coincident with the line-of-centers. The angle f2 that

relates the local and global coordinate systems is given as

f_ = arctangentl. YP2-- YG21 -_

[ Xp2 -- XG2 J 2
(B7)

The operating center distance and pressure angles can be calculated as
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Y

Piniot
\

Vii

(Xp2,

Yp2) '

_Xr

Figure 13._Coordlnate systems and variables to

calculate pinion orientation angle from gear angular

orientation angle.

P"Q = _{Xp2 X 2 _ 2- (B8)

fr +r_

"02 =arccosinel-_- l (B9)

Since the gear angular orientation is known, angle L2 can be calculated

by

7t

_'2 = 2 + -02 + 112 - ag (B10)

By the properties of the involute, arc length DG equals the length of line

segment DE, and therefore,

DE = _.2rg (BI 1)

The length of line segment DF can be determined from the properties of

right triangles as

-D-F:{rg + rp}tangent{-02} (B12)

The length of line segment EF can be found by subtraction

EF = DF - DE (B13)

By the properties of the involute, arc length FH equals the length of line

segment EF, so angle A can be calculated from

EF
A = -- (BI4)

rp

Finally, the pinion angular orientation angle ap can be calculated from

37_

Op = -_- + -02 - A + _2 (B15)

To apply the just-described procedure to calculate loaded windup,

we assume that the gcartrain is unloaded and (without loss of generality)

that the gear pair is operating at the pitch point. Then Eqs. (B1) to (B6)

may he used to calculate the gear angular orientation angle. Equa-

tions (B7) to (Bl5) may then immediately be applied to calculate the

pinion's angular orientation angle under zero load. Next, we use new

values for the gear centers' locations (the deformed locations after load

is applied) and, keeping the same value for the gear angular orientation

angle, again apply Eqs. (B7) to (B15) to calculate the pinion angular

orientation angle with load applied. Subtracting the pinion angular

orientation angles (the loaded angle minus the zero load angle) yields

the pinion loaded windup.

The procedure just developed is valid for the driving member rotating

clockwise. For the case of the driving member rotating counterclockwise,

the same procedure may be used if the following three changes are made:

Substitute the following equation for Eq. (B6):

Og =-_- Ill +_'1 + _"_1 (BI6)

Substitute the following equation for Eq. (BIO):

(B17)

Substitute the following equation for Eq. (B15):

3_

(_p = T--0 2 + A + _"_2 (B18)

In this study, the following FORTRAN subroutines, which are valid

for the case of the driving member rotating clockwise, were used to

calculate pinion loaded windup due to movements of the gear centers. A

companion routine called ANGLE is also listed.
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FORTRAN subroutines used for Loaded windup calculations

subroutine gea roo(xp, yp, rp, xg, yg, rg, rcpg, thetag)

gearao - FORTRAN subroutine to calculate the

GEAR Angular Orientation (GEARAO)in the global

coordinate system. The angular orientation is

defined by the angle from the global X-axis to

the vector originating at the gear center and

ending at the intersection of the bose circle

and the involute curve. The returned angle is

positive for counterclockwise.

written by Tim Krontz

Version 1.0 11/29/93

C ..........................................

list of arguments

inputs

xp,yp

xg,yg

rp

rg

rcpg

outputs

thetag

= global coordinates of pinion center

= global coordinates of gear center

= bose radius of pinion

= bose radius of gear

= radius to contact point on gear

= angular location of intersection of

gear bose circle with involute curve

values of input variables not changed upon return

C ................................................

C

c Notes:

c

c 1. This method ASSUMES that the center distance cd

c between the gears is larger than the sum of the c

inputs for the bose radii rg and rp. There is no

c error checking !!

c

c 2. This method assumes that the pinion is the driver

c rotating clockwise; it is valid for the gear

c driving counterclockwise.

c

c 3. This subroutine calls another routine-ANGLE.

C

c 4. Angle thetog is calculated within the range

c of {-pi/2 < thetag < 3*pi/Z}.
C

C ..................................................

C

pi= 4.*alan(1.)

call ongle(xg,yg,xp,yp,gamma)

gamma = gamma - pi/2.

alpha = acos((rp+rg)/
* sqrtCCxp-xg)*(xp-xg)+Cyp-yg)*Cyp-yg)))

tau = (sqrt((rcpg*rcpg)-Crg*rg))/rg)

thetag = pi/2. + alpha - tou + gamma

restrict the output to -pi/2 < thetog < 3"pi/2

if (thetag .gt. (3.*pi/Z.)) thetag=thetag-Z.*pi

if (thetag .lt. (-1.*pi/2.)) thetag=thetag+2.*pi

return

end

subroutine pinao(xp,yp,rp,xg,yg,rg,thetag,thetap)

pinoo - FORTRAN subroutine to calculate the PINion

Angular Orientation (PINAO)in the global coordinate

system. The angular orientation is defined by the

angle from the global X-axis to the vector originating

at the pinion center and ending at the intersection of
the base circle and the involute curve. The returned

angle is positive for counterclockwise.

written by Tim Krantz

Version 1.0 11/29/93 Original

Version 1.1 11/3@/9B Revised: Added if statement

to restrict variable tou--involute angle of gear--to be

less than pi

C ......................................................

list of arguments

inputs

xp,yp = global coordinates of pinion center

xg,yg = global coordinates of gear center

rp

rg

= bose radius of pinion

= bose radius of gear

thetag = angular location of intersection of

gear bose circle with involute curve

outputs

thetap = angular location of intersection of

pinion base circle with involute curve

values of input variables not changed upon return

C ....................................................

Notes:

1. This method ASSUMES that the center distance

cd between the gears is larger than the sum of

the inputs for the base radii rg and rp. There

is no error checking !!

2. This method assumes that the pinion is the

driver rotating clockwise; it is valid for

the gear driving counterclockwise.

3. This subroutine calls another routine--ANGLE.

4. Angle thetap is calculated within the range

of {-pi/2 < thetop < 3*pi/Z}.

C .................................................

C

pi = 4.*atan(1.)

C

c

call angle(xg,yg,xp,yp,gamma)
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gamma = gamma - pil2.

alpha = acos((rp+rg)/
sqrt(Cxp-xg)*Cxp-xg)+(yp-yg)*(yp-yg)))

tau = pi/2. + atpha + gamma - thetag

if (tau. gt. pi) tau = tau-2.*pi

omega = (((rp+rg) * ton(alpha)) - (tau * rg))/rp

thetap = 3.*pi/2. +oIpha - omega + gamma

restrict output to range -pi/2 < output < 3"pi/2

if (thetop .gt. (3.*pi/2.)) thetap = thetap-2.*pi

if (thetop. It, (-1.*pi/2.)) thetop = thetap+2.*pi

return

end

subroutine angle(xQ,yB,xl,yl,zeta)

angle - FORTRAN subroutine to calculate the angutar

orientation of o vector.

The origin of the vector is at x@,y@.

The end of the vector is at xl,yl.

The ongte is located from the X-axis with angles

measured positive counterclockwise.

written by Tim Krontz

Version 1.0 11/22/93

C ....................................................

C

C

c list of arguments

c

c inputs

C

c x0,y@ = global coordinates of vector origin

c xl,yl =gIobal coordinates of vector end

c

c outputs
c

c zeta anguIor Iocation of vector (radians)

C

C .....................................................

C

c Notes :

C

C i.

C

c

c 2.

C

c

C

The returned angle is in the range (0 <=

zeta < 2*pi).

If the origin and endpoints are identical,

the routine will return zeta = pi/2, even

though the angle is truty undefined.

C .....................................................

C

c Testing
C

c This subroutine was tested 11/23/93 by Tim Krontz.

c The correct answer was returned for each of the four

c quadrants and along each of the four coordinate axes.

c The subroutine returns zeta = pi/2 if the vector length

c is zero when actually the angle is undefined.

C

C ......................................................

C

pi--4.*atan(1.)

dy=yl-yO
dx=xl-xO

if (dx) 10,20,10

10 zeto=aton2(dy,dx)

if ( zeta .It. 0.) zeta=zeta+pi+pi
return

20 zeto=pi/2.

if (dy. tt.O.) zeta=zeta+pi

return

end
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